Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles

نویسندگان

  • B. Roldan Cuenya
  • A. I. Frenkel
  • S. Mostafa
  • F. Behafarid
  • J. R. Croy
  • L. K. Ono
  • Q. Wang
چکیده

Anomalous lattice dynamics and thermal behavior have been observed for ligand-free, size-, and shapeselected Pt nanoparticles NPs supported on nanocrystalline -Al2O3 via extended x-ray absorption finestructure spectroscopy. Several major differences were observed for the NPs with respect to bulk Pt: i a contraction in the interatomic distances, ii a reduction in the dynamic temperature-dependent bond-length disorder and associated increase in the Debye temperature D , and iii an overall decrease in the bond-length expansion coefficient coupled with NP stiffening. The increase in the Debye temperature is explained in terms of the NP size, shape, support interactions, and adsorbate effects. For a similar average size, we observe a striking correlation between the shapes of the NPs and their D values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atomic Insights into the Melting Behavior of Metallic Nano-catalysts

In the present study, molecular dynamics simulations have been utilized to provide fundamental understanding of melting behavior of pure Pd and Pt nanoparticles with the size of 10 nm in diameter, both free and graphene-supported during continuous heating. The embedded atom method is employed to model the metal-metal interactions, whereas a Lennard-Jones potential is applied to describe the met...

متن کامل

Investigation into the Effects of Nanoparticle Size and Channel Depth on the Thermophysical Properties of Water Nanofluids in the Nanochannel Using Molecular Dynamics Simulation

In this research, an in-house code which uses the molecular dynamics method to study the flow of different nanofluids in the copper nanochannel and computes the thermo-physicals properties has been developed. The flow of nanofluids has been studied from hydro-thermally viewpoint and temperature jump at the wall has been applied. Parametric study to consider the effect of different parametric su...

متن کامل

Green Approach to Synthesis of Pt and Bimetallic Au@Pt Nanoparticles Using Carica Papaya Leaf Extract and Their Characterization

This study reports a green approach to synthesis of monometallic platinum nanoparticles (Pt NPs) and bimetallic aurium@platinum nanoparticles (Au@Pt) using aqueous leaf extract of Carica papaya as a reducing and stabilizing agent. The nature and morphology of as-synthesized PtNPs and bimetallic Au@Pt NPs were characterized using UV/vis spectroscopy (UV–vis), high resolution transmission electro...

متن کامل

Anomalous small- and wide-angle X-ray scattering and X-ray absorption spectroscopy for Pt and Pt-Ru nanoparticles

We have characterized the structures of two kinds of catalytic nanoparticles of Pt and Pt–Ru, using anomalous small-angle X-ray scattering (ASAXS), anomalous wide-angle X-ray scattering (AWAXS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. With several X-ray energies near the Pt LIII edge, the AWAXS data reveal a face-centered cubic (f.c.c.) crystalline structure for Pt nan...

متن کامل

Synthesis and characterization of the Pt/SiO2 nanocomposite by the sol-gel method

The silica supported platinum nanoparticles was synthesized by using the sol-gel method. The possibility of using diamminedinitro platinum (II) as Pt precursor and effect of metal precursor concentration on the final Pt nanoparticle size was investigated. A stable silica sol was prepared via hydrolysis of tetraethyl orthosilicate (TEOS) as a metal alcoxide and condensation reaction. Subsequentl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010